
ENHANCED POLARIMETRIC RADAR IMAGING USING CROSS-CHANNEL

COUPLING CONSTRAINTS

THESIS

Andrea E. Perhai, Contractor, USAF

AFIT-ENG-T-14-J-9

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.



AFIT-ENG-T-14-J-9

ENHANCED POLARIMETRIC RADAR IMAGING USING CROSS-CHANNEL

COUPLING CONSTRAINTS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Andrea E. Perhai, B.A. Mathematics

Contractor, USAF

June 2014

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



AFIT-ENG-T-14-J-9

ENHANCED POLARIMETRIC RADAR IMAGING USING CROSS-CHANNEL

COUPLING CONSTRAINTS

Andrea E. Perhai, B.A. Mathematics
Contractor, USAF

Approved:

/signed/

Julie A. Jackson, PhD (Chairman)

/signed/

Capt. Dustin G. Mixon, PhD (Member)

/signed/

Gilbert L. Peterson, PhD (Member)

20 May 2014

Date

20 May 2014

Date

20 May 2014

Date



AFIT-ENG-T-14-J-9
Abstract

Data for a scene of interest may be collected over multiple polarization channels.

In the case of polarimetric synthetic aperture radar images, regularization techniques

are typically applied independently to each polarimetric channel. However, independent

processing does not account for cross-channel coupling and may corrupt the polarimetric

information in the signals. Recent consideration of joint enhancement techniques

has shown promising results for multi-channel datasets with similar regions of signal

magnitude and/or phase. However, in the case of polarimetric SAR data, scattering may be

present in some channels and not in others. This thesis mathematically formulates multi-

channel sparse imaging for polarimetric radar data using a joint enhancement algorithm to

enforce sparsity and polarimetric coupling constraints.

Two candidate functional relationships are derived to describe polarimetric coupling

among received signal channels: one convex function and one non-convex function. These

functions are reformed as optimization constraints. Then, an optimization problem is

constructed to maintain signal fidelity, enforce sparsity, and preserve interchannel coupling.

An iterative dual gradient descent algorithm is used to alternatively calculate updated scene

estimates for each channel and the maximizing Lagrange multipliers for each coupling

constraint. Results are found for several polarimetric SAR datasets. Jointly enhanced

images are compared with corresponding images found through independent enhancement,

taking into consideration signal fidelity, sparsity, polarimetric preservation, and scattering

classification.

Overall, the jointly enhanced image channels display significantly better polarimetric

preservation compared to the corresponding independently restored image channels. More

research is needed to understand how improved polarimetric preservation can be used to

improve target classification.

iv



To my Dad.

v



Acknowledgments

I cannot express enough thanks to my advisor, Dr. Julie A. Jackson. I sincerely

appreciate her guidance and patience throughout this entire project.

This research was supported in part by an appointment to the Postgraduate Research

Participation Program at the U.S. Air Force Institute of Technology administered by the

Oak Ridge Institute for Science and Education through an interagency agreement between

the U.S. Department of Energy and USAFIT.

Andrea E. Perhai

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Scattering Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Polarimetric Decompositions and Classification . . . . . . . . . . . 9
2.2.3 Polarimetric Image Formation . . . . . . . . . . . . . . . . . . . . 10

2.3 Synthetic Aperture Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 The Assumption of Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Multichannel Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Independent Enhancement . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Joint Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

III. Joint Enhancement of Polarimetric Data . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Non-Convex Constraint for Polarimetric Data . . . . . . . . . . . . . . . . 22
3.1.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Convex Constraint for Polarimetric Data . . . . . . . . . . . . . . . . . . . 27

vii



Page

3.3 Polarimetric Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Algorithmic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

IV. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Measures of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Scattering Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Canonical Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Signal Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Polarimetric Preservation . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.4 Scattering Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

viii



List of Figures

Figure Page

2.1 Canonical Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The (a) gray-scale SPAN (b) color coded SPAN, and (c) Pauli basis

decomposition of a dihedral. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Illustration of grazing angle θ and azimuth angle φ. . . . . . . . . . . . . . . . 12

2.4 Dual Descent Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 The (a) |S HH | (= |S VV |), and (b) |S HV | unenhanced responses of a dihedral. . . . 20

3.1 Illustration of a polarization state vector mapped onto the Poincaré Sphere
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ENHANCED POLARIMETRIC RADAR IMAGING USING CROSS-CHANNEL

COUPLING CONSTRAINTS

I. Introduction

In the late 1800’s, physicist Heinrich Hertz demonstrated several important properties of

electromagnetism that sparked widespread research interest in radio waves. Among

these experiments, Hertz showed that radio waves can be transmitted, re-radiated by

metallic objects, and then detected [1]. These important discoveries led to the development

of Radio Detection and Ranging (RADAR). Early radar systems were simple and primarily

used to determine a target’s range and velocity in a given direction [2]. Modern radar

systems also have the capability to track targets, determine a target’s size and shape, form

images of a scene of interest, and eliminate unwanted interference. Principles of radar

have led to advancements in many fields including meteorology, law enforcement, military

operations, and medicine [2].

The importance of wave polarization in radar was first studied extensively by

George Sinclair in the 1940’s [1]. Sinclair determined that radar targets transform the

transmitted wave polarization based on target attributes such as material and shape. By

transmitting and receiving both a Horizontal (H) and Vertical (V) polarization, Sinclair

characterized basic properties of targets of interest [1]. Sinclair’s foundational work led

to significant advances in polarimetry, the study of target aspects that can be determined

by changing the transmitted and received wave polarization state [1]. State-of-the-art

radar systems use multiple transmit/receive polarization channels for automated target

classification and interference reduction [3]. This thesis presents a method to preserve

1



the relationship between multiple radar polarization channels during sparsity-constrained

image enhancement in order to improve scene estimates and target classification.

1.1 Motivation

Synthetic aperture radar (SAR) images contain impulse response effects that appear to

smear or blur the image [4]. Sparse imaging is a regularization method which has proved

desirable for many radar applications since it provides a way to remove smearing resulting

from limited datasets [3]. In essence, regularization methods estimate scene reflectivity by

reducing the impulse response effects. Sparsity constraints enforced alongside data fidelity

constraints lead to signal energy placement in only high amplitude pixels [3]. Hence,

enforcing sparsity in an image emphasizes high magnitude scatterers while reducing the

effects of noise and the impulse response.

Often times, data for a scene of interest is collected over multiple channels, such

as frequency, elevation, or polarization [5]. In the case of polarimetric SAR images, the

regularization techniques are typically applied independently to each polarimetric channel.

However, independent processing may corrupt the polarimetric information in the signals,

as it does not account for cross-channel coupling. Recent research into joint enhancement

techniques has shown promising results for multi-channel datasets with similar support

regions, i.e., regions of similar signal magnitude and/or phase [5],[6]. However, in the case

of polarimetric SAR data, scattering may be present in some channels and not in others.

This thesis mathematically formulates multi-channel sparse imaging for polarimetric radar

data using a joint enhancement algorithm to enforce sparsity and polarimetric coupling

constraints.

1.2 Layout

Chapter 2 presents relevant background information on polarimetry, SAR, and current

image enhancement techniques. The Sinclair scattering matrix is presented along with

2



related polarimetric decompositions, which are later used to formulate coupling constraints.

Moreover, current techniques for independent and joint image enhancement are presented,

as well as the problems that arise with each when considering polarimetric data.

Chapter 3 derives two possible functional relationships to describe polarimetric

channel coupling among received signal channels. Then, an optimization problem is

constructed to maintain signal fidelity, enforce sparsity, and preserve interchannel coupling.

The convexity of the problem is analyzed. Finally, an algorithmic solution of the

optimization problem is developed and a measure of scattering classification is defined.

In Chapter 4, the joint optimization problem is solved using the algorithm described

in Ch. 3 for several polarimetric SAR datasets. These datasets include simulated radar data

of various canonical scatterers. Jointly enhanced images are compared with corresponding

images found through independent enhancement, taking into consideration signal fidelity,

sparsity, polarimetric preservation, and scattering classification.

Chapter 5 concludes the findings of our research and provides ideas for future research

into this topic.
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II. Background

This chapter introduces the basics of polarimetry, synthetic aperture radar (SAR), and

sparse imaging. Then, the multichannel imaging problem is introduced, including

current methods for independent and joint image enhancement.

2.1 Notation

Scalars are denoted by italicized letters. Vectors and matrices are bold and single and

double underlined, respectively, such as f and M. The ith entry in a vector is given by f (i).

Similarly, the i jth entry in a matrix is denoted M(i, j). A set of n vectors or matrices is

denoted by a subscript such as f
1
, f

2
,..., f

n
. The term diag {·} represents a diagonal matrix

whose iith entry is defined by the expression in the brackets. The operator (·)H represents

the Hermitian operator for vectors and matrices, and represents the complex conjugate for

scalars.

2.2 Polarimetry

In a monostatic radar system, the transmitting and receiving antennas are colocated

[2]. An electromagnetic wave pulse is transmitted, interacts with a target of interest, and

is reradiated non-uniformly in every direction. The backscattered pulse is collected at the

receiver. The ideal signal power received at the antenna, Pr, is given by the radar range

equation

Pr =
PtG2w2σ

(4π)3R4 , (2.1)

where Pt is the transmitted signal power, G is the antenna gain, w is the wavelength, σ is

the target radar cross section (RCS) and R is the one-way range from the radar to the target

[2]. The RCS is determined by target characteristics such as size, shape, or material, and

radar parameters such as wavelength and incidence angle [7]. The RCS is a measure of

4



detectability and hence provides an effective area of the target [7, 8]. Definitively,

σ = lim
R→∞

4πR2 |E
r|2

|Et|2
≈ 4π|S |2 in the far field, (2.2)

where |Et,r|2 represents the intensity of the transmitted and received electromagnetic waves,

respectively, and |S | is defined as the complex scattering amplitude of the wave [7, 8].

2.2.1 Scattering Matrix.

The RCS σ also depends on the polarization of the incident and scattered waves.

Specifically,

σpq ≈ 4π|S pq|
2, (2.3)

where p is the polarization of the transmitted/incident field and q is the polarization of the

scattered/received field [1][7]. The polarization states p and q are orthogonal, such as a

linear basis with horizontal and vertical components or circular basis with left and right

components. For simplicity, this work assumes p, q are either horizontal (H) or vertical

(V). The transmitted and received fields have components in the horizontal direction ĥ and

vertical direction v̂, i.e.,

Et = Et
V v̂ + Et

H ĥ, (2.4)

Er = Er
V v̂ + Er

H ĥ, (2.5)

where EH, EV denote the horizontal and vertical components, respectively, of the incident

and scattered fields [8]. A fully polarimetric radar can transmit and receive both horizontal

and vertical polarizations. By alternating the transmit and receive polarization states, the

radar collects all four complex scattering amplitudes. The entire scattering response is

stored in the Sinclair or Scattering Matrix S, which relates the transmitted and received

fields as Er = eik0R

R SEt [8][9]. Explicitly,E
r
H

Er
V

 =
eik0R

R

S HH S HV

S VH S VV


E

t
H

Et
V

 , (2.6)
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where k0 is the wavenumber of the transmitted wave, and the term eik0R

R accounts for

magnitude and phase deviations due to propagation over the distance R [9].

The four scattering amplitudes in S are complex-valued and hence contain both

a magnitude and relative phase. Each scattering amplitude is a function of the radar

frequency and the target aspect angle [8]. The diagonal elements are known as co-

polarization terms since they relate the scattering amplitude for the same transmit and

receive polarization. Similarly, the off-diagonal elements are known as cross-polarization

terms since they relate perpendicular polarizations. In the case of monostatic radar, the

cross-polarization terms are equal due to electromagnetic reciprocity [7–9]. Note that a

backscatter coordinate system is assumed, which is radar-centric. Within this model, the

horizontal and vertical transmit channels are initially off-set in phase by 180◦ or π radians

[8, 9].

The material and geometry of a particular target determine the characteristics of the

reradiated wave. When an incident pulse reflects once off a target surface, the signal is

said to single bounce. Similarly, when an incident pulse is scattered by two surfaces of

the target before returning to the receiver, the signal is said to double bounce. In general,

wave pulses that deflect off of an odd number of surfaces are called odd bounce, and wave

pulses that deflect off an even number of surfaces are called even bounce [10]. Physical

boundary conditions on perfect conductors lead to a phase shift of 180◦ on every bounce

[9]. Therefore, odd and even bounce scattering are determined from the phase difference

of the co-polarization terms, S HH and S VV . The class of odd bounce scatterers have a

scattering matrix of the form [7, 9, 11]

S
odd

=
1
√

2

1 0

0 1

 . (2.7)

Backscatter from a perfect odd-bounce conductor leads to a 0◦ shift between the

polarization channels, since the co-polarization terms are initially offset in phase by 180◦.

6



Therefore, the co-polarization scattering magnitudes are equal, |S HH | = |S VV |. Similarly,

the class of even bounce scatterers have a scattering matrix of the form [7, 9, 11]

S
even

=
1
√

2

1 0

0 −1

 . (2.8)

Backscatter from a perfect even-bounce conductor leads to a 180◦ phase shift between

the polarization channels [9], since two 180◦ phase shifts cancel, leaving the initial 180◦

shift. Therefore, the co-polarization scattering magnitudes are opposite, |S HH | = −|S VV |.

Cross-polarization scattering, also called diffuse scattering, happens when the reradiated

pulse is orthogonal to the one transmitted and hence bounce parity is unknown. The

amount of diffuse scattering is determined by the cross-polarization magnitude, |S HV |. The

scattering matrix for the diffuse class of scatterers is given by [7, 9, 11]

S
di f f use

=

0 1

1 0

 . (2.9)

Common canonical shapes have a known scattering response and are often used for

data calibration [10]. Canonical scatterers encompass a set of shapes including dihedrals,

trihedrals, spheres, flat plates, cylinders and top-hats. These shapes are characterized by

several parameters including: the (x, y, z) location of the shape, the length L, the height H,

the radius r, and the roll, pitch and yaw angles [10]. The roll, pitch, and yaw angles

define the counterclockwise rotation of the shape with respect to the x, y, and z axis,

respectively. In general, dihedrals and top-hats are even bounce scatterers and plates,

trihedrals, cylinders, and spheres are odd bounce scatterers [11]. Figure 2.1 shows an

example of all these shapes. In Chapter 4, we use the plate, dihedral, and top-hat to illustrate

the proposed polarization-preserving image enhancement techniques.

A rectangular plate is an odd bounce scatterer that is characterized as an object

with one flat surface. Reflected energy from a plate is directionally dependent [8, 10],

7



Figure 2.1: The six canonical shapes characterized by [10].

and thus backscattered energy is only received by a monostatic radar when the plate is

normal to the transmitted signal. A plate with (roll,pitch,yaw) = (0◦, 0◦, 0◦) and location

(x, y, z) = (0, 0, 0) is as pictured in Figure 2.1a. The peak RCS σplate is defined as [10]

σplate =
4πL2H2

w2 , (2.10)

where w is the radar wavelength.

Dihedrals are even bounce scatterers formed from two flat plates joined at a 90◦ angle.

A dihedral with (roll,pitch,yaw) = (0◦, 0◦, 0◦) and location (x, y, z) = (0, 0, 0) is as pictured

in Figure 2.1b. The peak RCS σdihedral is given by[10]

σdihedral =
8πL2H2

w2 . (2.11)

The top-hat is an even bounce scatterer that is formed from a circular flat plate and

cylinder. A top-hat with (roll,pitch,yaw) = (0◦, 0◦, 0◦) and location (x, y, z) = (0, 0, 0) is as

8



pictured in Figure 2.1e. The top-hat has a peak RCS σtophat given by [10]

σtophat =
8πrH2

w
√

2
. (2.12)

2.2.2 Polarimetric Decompositions and Classification.

In general, a scattering matrix S corresponds to a complex coherent target that is

a composite of many scatterer responses [11]. Information about the target cannot be

obtained purely from S. Instead, useful information is obtained by decomposing S into a

combination of scattering responses of canonical shapes [7, 11]. The Pauli decomposition

is one standard basis used to decompose a scattering matrix [1, 7]. It characterizes S in

terms of the standard scattering matrices of a sphere S
odd

, dihedral S
even

, and dihedral with

−45◦ pitch angle S
di f f use

. Specifically, the Pauli decomposition is given as [7, 9]

S = aS
odd

+ bS
even

+ cS
di f f use

(2.13)

where

a =
S HH + S VV
√

2
(2.14)

b =
S HH − S VV
√

2
(2.15)

c =
√

2S HV . (2.16)

The Pauli basis decomposition constants are such that |a|2 is the power scattered by targets

with odd bounce, |b|2 is the power scattered by targets with even bounce and |c|2 is the

power from diffuse scattering [7]. Similarly, the Krogager decomposition characterizes the

scattering matrix by the responses of a sphere, diplane and helix [7].

The Pauli and Krogager polarimetric decompositions provide a simple target

classification based on bounce type. Knowledge of the bounce type is useful to distinguish

between natural and man-made targets [12], and for automatic target recognition algorithms

which look for salient features to classify a target [11, 12]. Moreover, knowledge of S

allows for full polarimetric characterization of the scattering for the target of interest [8],

9



(a) (b) (c)

Figure 2.2: The (a) gray-scale SPAN (b) color coded SPAN, and (c) Pauli basis
decomposition of a dihedral.

and hence, the scattering response can be determined in any polarimetric basis. Changing

the polarimetric basis allows one to determine the scattered polarization state for any

incident polarization state, perhaps to enhance specific features of interest, by applying

signal processing techniques instead of physical antenna changes [8, 9].

2.2.3 Polarimetric Image Formation.

Since a fully polarimetric radar is a multichannel system, all the polarimetric channels

must be considered to determine the total scattered power, or SPAN, at a given pixel. The

SPAN is given by [7]

SPAN = |S HH |
2 + 2|S HV |

2 + |S VV |
2. (2.17)

The SPAN can be presented as a gray-scale image, where the intensity of a given pixel

represents the relative SPAN magnitude at that pixel. Figure 2.2(a) shows an example

of this type of image. While this method does effectively image a scene of interest, the

polarimetric information is not portrayed.

The SPAN can also be presented as a color-coded image where the relative term

intensities represent the color weights on a Red, Green, Blue (RGB) scale [7, 8]. For

example, let |S HH |
2 correspond to red, 2|S HV |

2 correspond to green, and |S VV |
2 correspond
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to blue. Figure 2.2(b) shows an example of this type of image. The polarimetric information

is portrayed in this image; however, the physical interpretation of the colors can be difficult

to comprehend. Furthermore, notice that in both gray-scale and color-coded SPAN images,

no information is portrayed about the relative phase.

One method to present both the polarimetric information and relative phase is through

a scattering matrix decomposition. For instance, the Pauli decomposition can be presented

as a color-coded image where |a|2, |b|2, and |c|2 represent the relative weights on an RGB

scale [1, 7]. In this case, the polarimetric information is portrayed with a meaningful

physical interpretation and the relative phase is captured within a and b. Notice that SPAN

= |a|2 + |b|2 + |c|2, so the total scattered power is maintained. Figure 2.2(c) shows an example

of a dihedral in the Pauli basis decomposition. Notice that the dihedral appears green, since

it is an even bounce structure.

2.3 Synthetic Aperture Radar

A synthetic aperture radar (SAR) is a radar system that simulates a large antenna

aperture by moving a small antenna over a large aperture extent [4]. The dual nature of SAR

allows for creation of high resolution ground images. Images are created of the measured

ground reflectivity of a scene of interest. There are two SAR modes, stripmap and spotlight,

which distinguish the scene geometry based on the radar. In stripmap mode, the radar beam

points in a fixed direction for the desired aperture duration. In spotlight mode, the radar

beam points at a fixed target for the desired aperture duration [4][2]. Circular flight paths

are optimal for spotlight mode since data is collected for a full 360◦ aperture. This work

assumes the use of spotlight mode SAR with a known radar flight path.

Typically, a SAR transmits a linear frequency modulated (LFM) chirp s(t) given by

[4, 13]

s(t) =


e j( f0t+αt2), − τc

2 ≤ t ≤ τc
2

0, else
, (2.18)
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Figure 2.3: Illustration of grazing angle θ and azimuth angle φ.

where f0 is the carrier frequency, α is the chirp rate, and τc is the time duration of the chirp.

The received signal r(t) is first mixed with delayed in-phase (I) and quadrature (Q) versions

of the transmitted chirp and then low-pass filtered. Denote this signal rc(t). Thus, [4, 13]

rc(t) =
A
2

∫ u1

−u1

g(u)e j 4αu2

c2 e− j 2u
c ( f0+2α(t−τ0))du, (2.19)

where A is a scale factor that accounts for attenuation effects, g(u) is the scene reflectivity

function, u is the distance along the range direction, c is the speed of light, τ0 is the time

delay from the radar platform to the scene center, and the interval [−u1, u1] denotes the

radar range based on chirp duration. Notice that by ignoring the quadratic phase skew term

4αu2

c2 , the desired scene reflectivity function g(u) is the inverse Fourier transform of rc(t)[13].

The signal rc(t) is also known as phase history data.

Phase history data is measured at each grazing angle θ and azimuth angle φ, as shown

in Figure 2.3, where (0, 0, 0) corresponds to the scene center [4]. Assume the grazing

angle is constant throughout the flight path. Backprojection [14] or Polar Reformat [4]

algorithms are used to accurately combine the information from all azimuth samples to

create an image of the scene. The backprojection algorithm is based on tomographic

imaging principles [14]. For each (x, y) coordinate in the scene extent, the inverse Radon

transform is computed to sum the reflectivity contributions from each azimuth angle at

that point [14]. Alternatively, the Polar Reformat algorithm (PFA) interpolates the range

and azimuth samples into a Cartesian raster before performing a two-dimensional Fourier
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transform [4]. This research uses PFA to find scene reflectivity. The range resolution ρr and

cross-range resolution ρc are determined by the bandwidth and aperture extent. Specifically,

[4]

ρr =
c

2Bc
, ρc =

w
2∆φ

, (2.20)

where Bc is the chirp bandwidth, w is the radar wavelength, and ∆φ is the aperture extent.

The ideal phase history data can also be thought of as a complex vector r of signal

magnitude and phase. Then, the sampled scene reflectivity x is the Fourier Transform of r.

Hence,

r = Ψx, (2.21)

where Ψ denotes the Fourier Transform matrix. In other words, r is a linear combination

of the basis Ψ with coefficients x. The complex measured phase history y is then given by

[15]

y = Φr = ΦΨx = Θx, (2.22)

whereΦ is the measurement matrix which accounts for the limited nature of data collection

that transforms r to y and Θ = ΦΨ. The matrix Ψ−1ΦΨ represents the radar point spread

function, which indicates the multi-dimensional impulse response of the imaging system.

The observed scene reflectivity Ψ−1y is a convolution of the point spread function with x.

Ideally, the scene reflectivity x is recovered by deconvolution of the point spread function.

2.4 The Assumption of Sparsity

In reality, the received signal contains a large amount of interference due to clutter,

thermal noise, and smearing from the impulse response. Due to bandlimited and aperture-

limited data collection, Θ is ill-posed and therefore not invertible [3]. It follows that

directly using scattering matrix decomposition theory on the received signal produces

images that may give incorrect information to the user, such as a misclassified target. The

smearing effects first need to be reduced from the received signal. If it is assumed that
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the scene of interest has discrete scatterers, then the received signal will be sparse and can

be represented in a basis with only a few nonzero entries [3, 15]. Sparse imaging is a

regularization method that estimates the scene reflectivity by putting signal energy in only

high amplitude pixels, thus emphasizing targets and reducing noise and smearing.

The assumption of sparsity holds when the measurement matrix Φ satisfies the

Restricted Isometry Property (RIP) [3]. RIP describes matrices which are orthogonal or

close to orthogonal. Specifically, Φ should satisfy the relationship [3]

(1 − δk)||x||22 ≤ ||Φx||22 ≤ (1 + δk)||x||22, (2.23)

where δk is the restricted isometry constant and x is the vector of measured data. The radar

collection model has sufficient performance guarantees which validate the use of sparse

reconstruction [3].

The system of equations in Eq. (2.22) is under-determined. The sparse estimate for

the measured data, x̂, is given by

x̂ = arg min
x
||x||0 s.t. ||y −Θx||22 ≤ ε1, (2.24)

where the `2 norm preserves the accuracy of the signal and ε1 is a predetermined

infinitesimal scalar corresponding to the level of error allowed [3][15]. However, the `0

norm is an NP-complete problem and is therefore impractical for real-world applications.

Switching the `0 to an `1 norm finds a relaxed sparse solution [15]. By including

the constraint directly in the objective function, the sparsity can be enforced through a

regularization parameter, λ. This produces the least squares problem [3, 15]

x̂ = arg min
x
||y −Θx||22 + λ||x||1. (2.25)

Note that the Lagrange multiplier λ is a positive scalar [16]. The ideal value of λ for a

particular scenario can be found though a dual optimization problem [17]. This research

considers sparse enhancement over various values of λ.
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2.5 Multichannel Enhancement

Often times, data for a scene of interest is collected over multiple channels, such

as frequency, elevation, or polarization. Since the channels carry common and/or

complementary information about the same scene, combining the channels proves useful

for improving estimates of appropriate scene attributes [3]. For example, data from

multiple elevations can be used to refine height estimates of scatterers within a scene

[5]. Multichannel images are formed using signal processing techniques to enhance and

combine multiple image channels. Enhancement is typically done independently for

each channel. Recent research has also considered joint enhancement, which involves

simultaneously enhancing each channel based on a known interchannel relationship [5, 6].

In [5], scatterer height estimates are shown to be more accurate using joint enhancement

versus independent enhancement techniques. Furthermore, in [6] the interchannel

covariance matrix is used to improve signal estimates and reduce noise in hyperspectral

imaging. Our work specifically considers image enhancement through the assumption of

sparsity.

2.5.1 Independent Enhancement.

Independent enhancement is appropriate for a single image or multiple independent

images. In the case of polarimetric data, independently enhancing each polarimetric

channel may corrupt the original signal or phase ratio between the channels by modifying

energy placement in the pixels. The outcome is an inferior solution that ignores the

interchannel coupling.

Sparse solution estimates for n multichannel images each with N pixels are found

independently for each channel through the least squares problem [18]

x̂1, x̂2, ..., x̂n = arg min
x1,x2,...,xn

n∑
i=1

C(xi), (2.26)

where the objective function C(xi) is given by

C(xi) = ||y
i
−Θ

i
xi||

2
2 + λi||xi||1. (2.27)
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Hence, a particular enhanced image x̂ based on the phase history y is given by

x̂ = arg min
x
||y −Θx||22 + λ||x||1. (2.28)

Most numeric solutions of Eq. (2.27) involve determining the gradient of C. To avoid

differentiating the `1 norm for values of x close to zero, ||x||1 is approximated as [5, 18]

||x||1 ≈
N∑

j=1

(|x( j)|2 + ε)1/2. (2.29)

It follows that

x̂ u arg min
x

(y −Θx)T (y −Θx) + λ

N∑
j=1

(|x( j)|2 + ε)1/2 (2.30)

= arg min
x

yT y − 2yTΘx + xTΘTΘx + λ

N∑
j=1

(|x( j)|2 + ε)1/2. (2.31)

The gradient with respect to x is given by [5]

∇x = −2ΘT y + 2ΘTΘx + λ

N∑
j=1

|(x) j|

(|(x) j|
2 + ε)1/2 (2.32)

= −2ΘT y + 2ΘTΘx + λΓ(x)x, (2.33)

where Γ(x) = diag
{

1
(|(x) j |2+ε)1/2

}
. Note that the approximate Hessian matrix is given by

H ≈ 2ΘTΘ + λΓ(x) [18].

The least squares problem in Eq. (2.26) has no closed form solution for λ , 0

[16]. However, Eq. (2.26) can also be phrased as a linear program or second order

cone program which are well known convex optimization problems [16]. Optimization

schemes such as conjugate gradient descent or quasi-Newton methods can be used to find

a minimizing solution [16]. However, these methods may be slow to converge due to

expensive computations. In [16], an algorithm is developed using Optimization Transfer to

iteratively converge while avoiding expensive computations. The output of each iterate k

is an estimate of the enhanced image, x̂k. Within the (k + 1)th iterate, a surrogate function

M(x; x̂k) is formed and minimized. Hence,

x̂k+1 = arg min
x

M(x; x̂k). (2.34)
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The minimum of a proper surrogate function will converge to the minimum of the original

objective function [16]. In other words,

lim
k→∞

arg min
x̂k

M(x; x̂k) = arg min
x

C(x). (2.35)

To guarantee the convergence in Eq. (2.35), the surrogate function must be monotonically

non-increasing and differentiable. To solve the problem in Eq. (2.35), the authors of [16]

derive the quadratic surrogate function

M(x; x̂k) = ||y −Θx||22 + λ

N∑
i=1

|x̂k(i)| + Re
{(
|x̂k(i)|

)∗ (
x(i) − x̂k(i)

)}
+
|x̂k(i)||x(i) − x̂k(i)|2

2x̂k(i)
.

(2.36)

The closed form solution of the (k + 1)th iterate is [16]

x̂k+1 =

[
ΘHΘ +

λ

2
D(x̂k)

]−1

ΘH y, (2.37)

where D(x̂k) = diag
{
|x̂k(i)|
x̂k(i)

}
. However, the closed-form solution is costly to calculate

for each iterate. Therefore, preconditioned conjugate gradient methods [16] are used to

find the minimum of Eq. (2.36) at each iterate, and Fast Fourier Transforms are used

for convolution. We employ the algorithm from [16] to obtain results for independent

enhancement.

2.5.2 Joint Enhancement.

Suppose the channels are known to be coupled through a set of functions. In this case,

it is appropriate to include the coupling functions as additional optimization constraints.

Current joint optimization problems are formulated as [5][19]

x̂1, x̂2, ..., x̂n = arg min
x1,x2,...,xn

n∑
i=1

C(xi)

s.t.
n∑

i=1

hi j(xi) = 0, j = 1...N, (2.38)

where the real-valued coupling functions
∑n

i=1 hi j(xi) are continuous and N is the number of

image pixels. Note that the coupling functions have an independent additive form, which

implies that the individual images may be still be independently enhanced [5].
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A method for solution involves incorporating the constraint functions into the

objective function through the use of Lagrange multipliers [5]. Assume that a local

minimum point (x′1, .., x
′
n) exists. Hence, there exists a Lagrange multiplier β′j for each

set of constraints
{
h1 j(x1), h2 j(x2), ..., hn j(xn)

}
which corresponds to the local minimum. It

follows that the analogous unconstrained objective function is given by [5]
n∑

i=1

C(xi) + β′T h, (2.39)

where h is the stack of constraint functions given by

h =

 n∑
i=1

hi1(xi),
n∑

i=1

hi2(xi), ...,
n∑

i=1

hiN(xi)

T

, (2.40)

and β′ is a vector such that β′( j) = β′j. Moreover, (2.39) is locally convex around (x′1, ..., x
′
n).

Using the Local Duality Theorem, Eq. (2.38) is equivalent to the dual function [5]

x̂1, x̂2, ..., x̂n = arg max
β

arg min
x1,x2,...,xn

n∑
i=1

C(xi) + βT h, (2.41)

for any β locally near β′.

Notice that the optimization problem in (2.41) involves solving for both the Lagrange

multipliers β j and the enhanced images xi. The Dual Descent algorithm [5] is a numerical

optimization scheme which employs a dual gradient descent to solve for the Lagrange

multipliers and enhanced images. In particular, the Dual Descent algorithm fixes the set of

β j while solving for the restored images xi and then subsequently fixes the set of restored

images xi to solve for the set of β j [5]. The process is repeated until the relative change in

both β j and the restored images has been sufficiently minimized.

Specifically, the estimated Lagrange multiplier vector β̂ is updated for each iterate k

using the gradient based equation [5]

β̂
k

= β̂
k−1

+ αhk−1, (2.42)

where hk−1 is the set of constraint functions based on the (k − 1)th image estimates,

x̂k−1
1 , ..., x̂k−1

n . Subsequently, the enhanced image estimates for an iterate k are found by
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Input: Measured images y
i
, forward operators Θ

i
, sparseness parameters

p, λi, stepsize α, and convergence parameters δ1, δ2, where i = 1, ..., n.

Output: Jointly enhanced images xi, where i = 1, .., n.

Initialize: x0
i = y

i
, β0 = 1, and ∇β0 =

∑n
i=1 hi j(x0

i ), j = 1, ..,N.

Algorithm:
while e > δ2 do

Calculate βk+1 = βk + α∇βk

while Relative change in all xl
i > δ1 do

Form diagonal matrix Γ
1

using xl
i

Solve for xl+1
i given βk+1

Calcuate relative change in xl
i given as ||x

l+1
i −xl

i ||

||xl
i ||

end while
Save solution as xk+1

i = xl+1
i

Calculate ∇βk+1 =
∑N

j=1 h j(xk+1
1 , ..., xk+1

n )

Calculate relative change in β given as e =

∣∣∣∣∣Cost fn using βk+1
− Cost fn using βk

∣∣∣∣∣∣∣∣∣∣Cost fn using βk
∣∣∣∣∣

end while
Output xi = xk+1

i

Figure 2.4: Pseudocode for the Dual Descent Algorithm [5].

minimizing (2.35) using conjugate gradient or quasi-Newton methods. Table 2.1 shows the

pseudocode for the Dual Descent method. The Dual Descent method provides a starting

point to solve the joint enhancement problem for polarimetric radar data.

2.5.3 Issues.

Recent research into joint enhancement has shown promising results for multichannel

images with similar support regions, such as signal magnitude or phase [5, 6]. In the case of

polarimetric data, specific scatterers have high signal strength in some channels but not in

others. This is true for a dihedral, which has similar support in the S HH and S VV channels,
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(a) (b)

Figure 2.5: The (a) |S HH | (= |S VV |), and (b) |S HV | unenhanced responses of a dihedral.

but has a low response in the S HV channel. Figure 2.4 shows the scattering responses of the

dihedral.

Moreover, the formulation of coupling constraints in Equation (2.38) does not account

for interchannel relationships in which an independent additive form cannot be achieved.

For example, consider the convex function

h(z1, z2) =
1
2
|z1 + z2|. (2.43)

Notice that without further assumptions (2.43) cannot be written in the form h(z1, z2) =

h1(z1) + h2(z2), where h1, h2 are any convex functions. Similarly, the relationship

between polarimetric channels given by scattering matrix decomposition does not follow an

independent additive form. Consequently, the generalized joint enhancement theory must

be modified before application to polarimetric data. Chapter 3 presents such a generalized

method.
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III. Joint Enhancement of Polarimetric Data

Radar data may be collected over multiple polarization channels [3]. Channels may

carry common and/or complementary information about the scene of interest.

Combining appropriate channels produces improved estimates of scene attributes [5].

Multichannel images are formed by enhancing and combining multiple image channels.

This research specifically considers image enhancement using the assumption of sparsity.

Although image enhancement is usually done independently for each channel, recent

research has showed promising results for joint image enhancement [5][6]. Joint image

enhancement accounts for the interchannel relationship that exists when multiple channels

are coupled through a known set of functions. The Dual Descent algorithm is a current

scheme designed to optimize the tradeoff between sparsity in the image and preservation

of interchannel relationships that satisfy Eq. (2.38) [5]. Joint enhancement has proved

successful for multichannel datasets with similar support regions, such as signal magnitude

or phase [5, 6, 19]. In the case of polarimetric radar data, the received signal may

be different from one channel to the next. However, the polarimetric channels are

related to one another and together provide useful information about the scattering of a

target of interest. It is important to preserve the interchannel relationship during image

enhancement.

This section derives two functional relationships to describe polarimetric channel

coupling among received signal channels. Then, an optimization problem is constructed

to maintain signal fidelity, enforce sparsity, and preserve interchannel coupling. The

convexity of the solution is analyzed. Finally, an algorithmic solution of the optimization

problem is developed.
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Figure 3.1: Illustration of a polarization state vector mapped onto the Poincaré Sphere
shown in red, and scaled sub-sphere shown in black.

3.1 Non-Convex Constraint for Polarimetric Data

Recall that a fully polarimetric monostatic radar produces three distinct polarimetric

data channels: S HH, S HV and S VV . For clarity, let y
HH

, y
HV

, y
VV

and xHH, xHV , xVV

represent the received phase history and enhanced scene reflectivity of the S HH, S HV and

S VV channels, respectively. The three enhanced polarimetric channels xHH, xHV , and

xVV are the foundation for a variety of radar applications including data calibration and

target classification, and therefore, need to be accurate signals with precise interchannel

relationships.

The Poincaré Polarization sphere [7, 9] provides a useful picture of all possible

scattered polarization states. In particular, each point on the sphere corresponds to a

specific scattered polarization state. Recall that the scattered polarization state can be

fully described by the incident polarization state and the scattering matrix. Therefore,

preservation of the scattering matrix is important to maintain the proper direction vector of

the point on the Poincaré sphere, i.e., the precise scattered polarization state. Although

the radius of the Poincaré sphere is informative, the direction vector fully describes the

polarization state [7]. Permitting the radius to change but maintaining the vector direction

allows for signal sparsity without changing the inherent information about the polarization
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state. To preserve the vector direction, the contributions of the enhanced channels should

remain proportional to the contributions of the received channels. Moreover, the phase

between channels is informative for the classification of scattering types. Since phase

is captured within a complex exponential, the ratio of any two channels gives the phase

differences as well as the ratio of the signal magnitudes. Therefore, we propose an

appropriate coupling constraint

h j(xHH, xHV , xVV) =

∣∣∣∣∣∣∣ yHH
( j)

y
VV

( j)
−

xHH( j)
xVV( j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ yHV
( j)

y
VV

( j)
−

xHV( j)
xVV( j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ y
HV

( j)

y
HH

( j)
−

xHV( j)
xHH( j)

∣∣∣∣∣∣∣ , (3.1)

to preserve relative channel magnitudes and phase differences. The real-valued constraint

of Eq. (3.1) is a measure of the absolute error between received and enhanced polarimetric

ratios for each resolution cell j, or pixel, in the image. Polarimetric preservation occurs

when h j(xHH, xHV , xVV) = 0 for each pixel j.

3.1.1 Convexity.

Consider the convexity of h j. Clearly, h j is not a linear function. In general, a function

is convex if the Hessian is positive semidefinite [20]. The Lagrangian ∇h j(xHH, xHV , xVV)

is given by

∇h j(xHH, xHV , xVV) =

[
∂h j

∂xHH( j)
∂h j

∂xHV( j)
∂h j

∂xVV( j)

]T

, (3.2)
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where

∂h j

∂xHH( j)
=

∂

∂xHH( j)


∣∣∣∣∣∣∣ yHH

( j)

y
VV

( j)
−

xHH( j)
xVV( j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ yHV
( j)

y
VV

( j)
−

xHV( j)
xVV( j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ y
HV

( j)

y
HH

( j)
−

xHV( j)
xHH( j)

∣∣∣∣∣∣∣

(3.3)

=
1

|xVV( j)|

y
VV

( j)

|y
VV

( j)|

∣∣∣∣yVV
( j)xHH( j) − y

HH
( j)xVV( j)

∣∣∣∣
(y

VV
( j)xVV( j) − y

HH
( j)xVV( j))

+
xHV( j)

x2
HH( j)

(
y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
∣∣∣∣∣ y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣
(3.4)

∂h j

∂xHV( j)
=

∂

∂xHV( j)


∣∣∣∣∣∣∣ yHH

( j)

y
VV

( j)
−

xHH( j)
xVV( j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ yHV
( j)

y
VV

( j)
−

xHV( j)
xVV( j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ y
HV

( j)

y
HH

( j)
−

xHV( j)
xHH( j)

∣∣∣∣∣∣∣

(3.5)

=
1

|xVV( j)|

y
VV

( j)

|y
VV

( j)|

∣∣∣∣yVV
( j)xHV( j) − y

HV
( j)xVV( j)

∣∣∣∣
(y

VV
( j)xHV( j) − y

HV
( j)xVV( j))

(3.6)

+
1

|xHH( j)|

y
HH

( j)

|y
HH

( j)|

∣∣∣∣yHH
( j)xHV( j) − y

HV
( j)xHH( j)

∣∣∣∣
(y

HH
( j)xHV( j) − y

HV
( j)xHH( j))

(3.7)

∂h j

∂xVV( j)
=

∂

∂xVV( j)


∣∣∣∣∣∣∣ yHH

( j)

y
VV

( j)
−

xHH( j)
xVV( j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ yHV
( j)

y
VV

( j)
−

xHV( j)
xVV( j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ y
HV

( j)

y
HH

( j)
−

xHV( j)
xHH( j)

∣∣∣∣∣∣∣

(3.8)

=
xHH( j)

x2
VV( j)

(
y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣ +
xHV( j)

x2
VV( j)

(
y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

)
∣∣∣∣∣ y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣ . (3.9)
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Therefore the Hessian H
h

is given by H
h

=


∂2h j

∂x2
HH( j)

∂2h j

∂xHH( j)∂xHV ( j)
∂2h j

∂xHH( j)∂xVV ( j)

∂2h j

∂xHH( j)∂xHV ( j)
∂2h j

∂x2
HV ( j)

∂2h j

∂xHV ( j)∂xVV ( j)

∂2h j

∂xHH( j)∂xVV ( j)
∂2h j

∂xHV ( j)∂xVV ( j)
∂2h j

∂x2
VV ( j)


where

∂2h j

∂x2
HH( j)

=


−2xHV( j)

(
y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
x3

HH( j)
∣∣∣∣∣ y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣
 (3.10)

∂2h j

∂xHH( j)∂xHV( j)
=


(

y
HV

( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
x2

HH( j)
∣∣∣∣∣ y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣
 (3.11)

∂2h j

∂xHH( j)∂xVV( j)
=


(

y
HH

( j)

y
VV

( j) −
xHH( j)
xVV ( j)

)
x2

VV( j)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣
 (3.12)

∂2h j

∂x2
HV( j)

= 0 (3.13)

∂2h j

∂xHV( j)∂xVV( j)
=


y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

x2
VV( j)

∣∣∣∣∣ y
HV

( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣
 (3.14)

∂2h j

∂x2
VV( j)

=


2xHH( j)

(
y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

)
x3

VV( j)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣ −
2xHV( j)

(
y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

)
x3

VV( j)
∣∣∣∣∣ y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣
 . (3.15)

Let f = [ f H
1 f H

2 f H
3 ]H ∈ C3. Then H

h
f =

[
a b c

]H

where

a = f1


−2xHV( j)

(
y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
x3

HH( j)
∣∣∣∣∣ y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣
 + f2


(

y
HV

( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
x2

HH( j)
∣∣∣∣∣ y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣
 (3.16)

+ f3


(

y
HH

( j)

y
HV

( j) −
xHH( j)
xVV ( j)

)
x2

VV( j)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣


b = f1


(

y
HV

( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
x2

HH( j)
∣∣∣∣∣ y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣
 + f3


y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

x2
VV( j)

∣∣∣∣∣ y
HV

( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣
 (3.17)
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c = f1


(

y
HH

( j)

y
VV

( j) −
xHH( j)
xVV ( j)

)
x2

VV( j)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣
 + f2


y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

x2
VV( j)

∣∣∣∣∣ y
HV

( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣
 (3.18)

+ f3


2xHH( j)

(
y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

)
x3

VV( j)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣ −
2xHV( j)

(
y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

)
x3

VV( j)
∣∣∣∣∣ y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣
 .

Therefore f H H
h

f =

f H
1 f1


−2xHV( j)

(
y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
xHH( j)3

∣∣∣∣∣ y
HV

( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣
 + f H

1 f2


(

y
HV

( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
x2

HH( j)
∣∣∣∣∣ y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣
 (3.19)

+ f H
1 f3


(

y
HH

( j)

y
VV

( j) −
xHH( j)
xVV ( j)

)
x2

VV( j)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣
 + f H

2 f1


(

y
HV

( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
x2

HH( j)
∣∣∣∣∣ y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣


+ f H
2 f3


y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

x2
VV( j)

∣∣∣∣∣ y
HV

( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣
 + f H

3 f1


(

y
HH

( j)

y
VV

( j) −
xHH( j)
xVV ( j)

)
x2

VV( j)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣


+ f H
3 f2


y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

x2
VV( j)

∣∣∣∣∣ y
HV

( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣


+ f H
3 f3


2xHH( j)

(
y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

)
x3

VV( j)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣ −
2xHV( j)

(
y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

)
x3

VV( j)
∣∣∣∣∣ y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣
 .
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Equation (3.19) simplifies to

f H H
h

f = f H
1 f1


−2xHV( j)

(
y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
x3

HH( j)
∣∣∣∣∣ y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣
 (3.20)

+ 2Re( f H
1 f2)


(

y
HV

( j)

y
HH

( j) −
xHV ( j)
xHH( j)

)
x2

HH( j)
∣∣∣∣∣ y

HV
( j)

y
HH

( j) −
xHV ( j)
xHH( j)

∣∣∣∣∣


+ 2Re( f H
1 f3)


(

y
HH

( j)

y
VV

( j) −
xHH( j)
xVV ( j)

)
x2

VV( j)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣


+ 2Re( f H
3 f2)


y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

x2
VV( j)

∣∣∣∣∣ y
HV

( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣


+ ( f H
3 f3)


2xHH( j)

(
y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

)
x3

VV( j)
∣∣∣∣∣ y

HH
( j)

y
VV

( j) −
xHH( j)
xVV ( j)

∣∣∣∣∣ −
2xHV( j)

(
y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

)
x3

VV( j)
∣∣∣∣∣ y

HV
( j)

y
VV

( j) −
xHV ( j)
xVV ( j)

∣∣∣∣∣
 .

At this point, it becomes difficult to make generalizations about the convexity of the

function based on the definiteness of the Hessian. However, notice that h j does have

discontinuities whenever any components in xi are zero, i ∈ {HH,VV}. Therefore, the

domain of each image would certainly need restriction in some fashion to be convex.

However, an argument can be made for local convexity of the function during optimization

if an initial guess for each xi is sufficiently close to the desired relative minimum point x∗i .

Such an intital guess may be the received image y
i
.

3.2 Convex Constraint for Polarimetric Data

Equivalently, polarization preservation occurs when the received phase history

polarization ratios are equal to the enhanced scene reflectivity polarization ratios, i.e.,

y
HH

( j)

y
VV

( j)
=

xHH( j)
xVV( j)

,
y

HV
( j)

y
VV

( j)
=

xHV( j)
xVV( j)

,
y

HV
( j)

y
HH

( j)
=

xHV( j)
xHH( j)

. (3.21)
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Cross-multiplication leads to another appropriate real-valued constraint given by

g j =
∣∣∣∣yHH

( j)xVV( j) − y
VV

( j)xHH( j)
∣∣∣∣ +

∣∣∣∣yHV
( j)xVV( j) − y

VV
( j)xHV( j)

∣∣∣∣ (3.22)

+
∣∣∣∣yHV

( j)xHH( j) − y
HH

( j)xHV( j)
∣∣∣∣ .

Notice that each term within g j(xHH, xHV , xVV) is a composition of two convex functions:

the absolute value function and a linear function of the channels. Convexity is preserved

under composition and addition, so it follows that g j is convex [20]. To see this rigorously,

consider the Hessian of g j(xHH, xHV , xVV). The Lagrangian ∇g j(xHH, xHV , xVV) is

∇g j(xHH, xHV , xVV) =

[
∂g j

∂xHH( j)
∂g j

∂xHV( j)
∂g j

∂xVV( j)

]T

, (3.23)

where

∂g j(xHH, xHV , xVV)
∂xHH( j)

= −y
VV

( j)
y

HH
( j)xVV( j) − y

VV
( j)xHH( j)∣∣∣∣yHH

( j)xVV( j) − y
VV

( j)xHH( j)
∣∣∣∣ (3.24)

+ y
HV

( j)
y

HV
( j)xHH( j) − y

HH
( j)xHV( j)∣∣∣∣yHV

( j)xHH( j) − y
HH

( j)xHV( j)
∣∣∣∣

∂g j(xHH, xHV , xVV)
∂xHV( j)

= −y
VV

( j)
y

HV
( j)xVV( j) − y

VV
( j)xHV( j)∣∣∣∣yHV

( j)xVV( j) − y
VV

( j)xHV( j)
∣∣∣∣ (3.25)

− y
HH

( j)
y

HV
( j)xHH( j) − y

HH
( j)xHV( j)∣∣∣∣yHV

( j)xHH( j) − y
HH

( j)xHV( j)
∣∣∣∣

∂g j(xHH, xHV , xVV)
∂xVV( j)

= y
HH

( j)
y

HH
( j)xVV( j) − y

VV
( j)xHH( j)∣∣∣∣yHH

( j)xVV( j) − y
VV

( j)xHH( j)
∣∣∣∣ (3.26)

+ y
HV

( j)
y

HV
( j)xVV( j) − y

VV
( j)xHV( j)∣∣∣∣yHV

( j)xVV( j) − y
VV

( j)xHV( j)
∣∣∣∣ .

Notice that the fractional term of each partial derivative simplifies to ±1, meaning each

partial derivative is not explicitly a function of the corresponding partial term. Therefore

the Hessian H
g

is given by

H
g

=


0 0 0

0 0 0

0 0 0

 . (3.27)
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Clearly, f H H f = 0 for all f ∈ R3, which implies the Hessian is positive semidefinite.

3.3 Polarimetric Data

The joint image enhancement problem for polarimetric radar data can be phrased as

min
xHH ,xHV ,xVV

∥∥∥∥y
HH
−ΘxHH

∥∥∥∥2

2
+

∥∥∥∥y
HV
−ΘxHV

∥∥∥∥2

2
+

∥∥∥∥y
VV
−ΘxVV

∥∥∥∥2

2

subject to

‖xHH‖1 ≤ α1

‖xHV‖1 ≤ α2

‖xVV‖1 ≤ α3

p j(xHH, xHV , xVV) ≤ τ,

(3.28)

where for small values of α1, α2, α3, sparse solutions are enforced and for small values of

τ, interchannel relationships are preserved through the coupling constraint p j = {h j, g j} for

each pixel j. Note that the last constraint in Eq. (3.28) could be an equality constraint,

equal to zero, which would preserve interchannel coupling. However, the requirement is

relaxed to allow for small error tolerance since the signals will be noisy. Moreover, notice

that the same Θ and λ are assumed for each channel since all the channels are collected at

the same time and therefore undergo the same data collection effects.

Using the method of Lagrange multipliers and assuming the Kuhn-Tucker conditions

hold [20], the optimal solution satisfies

∇L = 0, (3.29)

where

L = L1 + β1 p1(x∗HH, x
∗

HV , x
∗

VV) + β2 p2(x∗HH, x
∗

HV , x
∗

VV) + · · · + βN pN(x∗HH, x
∗

HV , x
∗

VV), (3.30)

L1 =
∥∥∥∥y

HH
−Θx∗HH

∥∥∥∥2

2
+

∥∥∥∥y
HV
−Θx∗HV

∥∥∥∥2

2
+

∥∥∥∥y
VV
−Θx∗VV

∥∥∥∥2

2
+ λ‖x∗HH‖1 + λ‖x∗HV‖1 + λ‖x∗VV‖1,

(3.31)

x∗HH, x∗HV , x∗VV are the relative minimum points, λ is the Lagrange multiplier corresponding

to the `1-norm constraint, and β j is the Lagrange multiplier corresponding to the
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polarization-preserving constraint p j(x∗HH, x
∗
HV , x

∗
VV) for the jth pixel. Since there are n = 3

data channels and N pixels per channel, the gradient of the Lagrangian becomes



∂
∂xHH

∂
∂xHV

∂
∂xVV

∂
∂λ1

∂
∂λ2

∂
∂λ3

∂
∂β1

∂
∂β2

...

∂
∂βN



L =



2ΘHΘxHH − 2ΘH y
HH

+ λ1


|xHH(1)|

(|xHH(1)|2+ε)1/2

...

|xHH(N)|
(|xHH(N)|2+ε)1/2

 +


β1∂p1(xHH ,xHV ,xVV )

∂xHH(1)
...

βN∂pN (xHH ,xHV ,xVV )
∂xHH(N)


2ΘHΘxHV − 2ΘH y

HV
+ λ2


|xHV (1)|

(|xHV (1)|2+ε)1/2

...

|xHV (N)|
(|xHV (N)|2+ε)1/2

 +


β1∂p1(xHH ,xHV ,xVV )

∂xHV (1)
...

βN∂pN (xHH ,xHV ,xVV )
∂xHV (N)


2ΘHΘxVV − 2ΘH y

VV
+ λ3


|xVV (1)|

(|xVV (1)|2+ε)1/2

...

|xVV (N)|
(|xVV (N)|2+ε)1/2

 +


β1∂p1(xHH ,xHV ,xVV )

∂xVV (1)
...

βN∂pN (xHH ,xHV ,xVV )
∂xVV (N)


‖xHH‖1

‖xHV‖1

‖xVV‖1

p1(xHH, xHV , xVV)

p2(xHH, xHV , xVV)
...

pN(xHH, xHV , xVV)



(3.32)

where we have approximated the `1-norm as in [18].

Using the Local Duality Theorem, Eq. (3.28) can be converted to the equivalent dual

problem

x̂HH, x̂HV , x̂VV = arg max
β

arg min
xHH ,xHV ,xVV

L1(xHH, xHV , xVV) + βT p, (3.33)

where β is a vector such that β( j) = β j and p( j) = p j.
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3.4 Algorithmic Solution

To solve the polarimetric joint enhancement problem given in Eq. (3.33), we employ

an iterative dual gradient method similar to the Dual Descent method described in Table

(2.1) [5]. Moreover, we set the initial estimates of xi as the corresponding y
i
. Other inputs

include the desired sparsity weighting λ, data collection operator Θ, β stepsize α, and

other desired convergence parameters. Then, a double loop is initiated, where we alternate

solving for the estimates x̂i and the Lagrange multiplier estimates β̂.

The image estimates x̂i remain fixed while solving for β̂. Specifically, the β̂ update

equation for the kth iterate is

β̂
k

= β̂
k−1

+ αpk−1, (3.34)

where pk−1 is the set of constraint functions based on the (k − 1)th image estimates,

x̂k−1
HH , x̂

k−1
HV , x̂

k−1
VV . Then each entry β̂ j

k
in β̂

k
is scaled by the received signal strength s j given

by

s j = (y2
HH

( j) + 2y2
HV

( j) + y2
VV

( j)), (3.35)

in order to emphasize preservation on regions of the scene where received signal strength is

larger. Next, the β̂
k

remain constant while solving for the image estimates x̂k
i . Specifically,

a preconditioned conjugate gradient method with a quadratic surrogate function is used,

as in [16]. Chapter 4 demonstrates the suitability of this algorithm, considering both the

non-convex constraint p j = h j and the convex constraint p j = g j.
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IV. Results

This research considers optimization constraints to preserve coupling between

multiple polarization channels of radar data collected for the same scene of interest. For

a given resolution cell or pixel j, scattering types are preserved through the non-convex

constraint

h j(xHH, xHV , xVV) =

∣∣∣∣∣∣∣ yHH
( j)

y
VV

( j)
−

xHH( j)
xVV( j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ yHV
( j)

y
VV

( j)
−

xHV( j)
xVV( j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ y
HV

( j)

y
HH

( j)
−

xHV( j)
xHH( j)

∣∣∣∣∣∣∣ , (4.1)

or the convex constraint

g j(xHH, xHV , xVV) =
∣∣∣∣yHH

( j)xVV( j) − y
VV

( j)xHH( j)
∣∣∣∣ +

∣∣∣∣yHV
( j)xVV( j) − y

VV
( j)xHV( j)

∣∣∣∣
+

∣∣∣∣yHV
( j)xHH( j) − y

HH
( j)xHV( j)

∣∣∣∣ . (4.2)

In this section, the joint optimization problem in Section 3.4 is solved using the algorithm

described in Section 3.5 for both the convex and non-convex coupling constraints.

Polarimetric SAR datasets of several canonical scatterers [10] are considered. Jointly

enhanced images are compared with corresponding images found through independent

enhancement. Specifically, the objective function is broken down and individual costs are

considered to demonstrate fidelity of signal estimates as well as preservation of polarimetric

channel coupling. Moreover, a scattering measure of success is derived and compared for

the enhanced images.

4.1 Measures of Error

Recall that the optimization objective function L is given by

L =
∥∥∥∥y

HH
−ΘxHH

∥∥∥∥2

2
+

∥∥∥∥y
HV
−ΘxHV

∥∥∥∥2

2
+

∥∥∥∥y
VV
−ΘxVV

∥∥∥∥2

2
+ λ1‖xHH‖1 + λ2‖xHV‖1 + λ3‖xVV‖1

+ β1 p1(xHH, xHV , xVV) + β2 p2(xHH, xHV , xVV) + · · · + βN pN(xHH, xHV , xVV), (4.3)

where p j(xHH, xHV , xVV) is either the convex constraint g j or the non-convex constraint h j.

The individual costs of sparsity, error of signal estimates, and error of polarimetric preser-
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vation are considered and are determined from the respective terms of L. Additionally, the

error of scattering classification is derived from the Pauli basis decomposition.

4.1.1 Objective Function.

Signal fidelity indicates the accuracy of the signal estimate. The error due to loss of

signal fidelity for a particular estimate x̂i, i ∈ {HH,HV,VV} is given by the 2-norm cost

||y
i
−Θx̂i||

2
2. (4.4)

The amount of sparsity present in a signal estimate x̂i is given by the 1-norm cost

||x̂i||1. (4.5)

The error due to loss of polarimetric preservation is calculated using the cost of the

polarimetric coupling constraint. Hence, when h j was enforced during optimization, the

error cost is given by h j(x̂HH, x̂HV , x̂VV), and similarly for g j.

4.1.2 Scattering Measure.

Preservation of the scattering matrix is important, particularly for target classification

efforts. Along with demonstrating that the objective function is effectively enforced, the

classification of the enhanced images is considered. Forming an image from the Pauli basis

decomposition creates a RBG vector c = [R G B]T for each pixel, where high values of

red correspond to strong odd bounce reflection, high values of green correspond to strong

even bounce reflection, and strong values of blue correspond to high orthogonal reflection.

If little to no returned signal is detected, c has values close to 0 and then the pixel is black.

For clarity, off-target black pixels are recolored white. The classification error at a given

pixel is given by

||ĉ − c||22, (4.6)

where ĉ is the RGB vector of the enhanced signal and c is the RBG vector of the ideal

scattering matrix at that pixel.
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4.1.3 Parameters.

This research considers the measures of error over several parameters, including

sparsity level, noise level, and specific regions of the scene. In each case, error is averaged

over 500 Monte Carlo noise simulations.

The value of the sparsity enforcing parameter λ ranges from 0.1 − 1.3. As λ is

increased, the level of sparsity enforced is increased. In [17], an algorithm is presented

for determining the value of λ corresponding to the lowest objective function cost. For this

research, an appropriate range of λ values was picked visually.

Furthermore, both datasets are simulated and therefore do not contain noise. White

Gaussian noise (WGN) is added to the data at peak signal-to-noise Ratio (SNR) ranging

from 20 dB to 50 dB, with 20 dB indicating a high noise environment and 50 dB indicating

a low noise environment.

Moreover, measures of error were considered over specific regions of the scene. The

full scene error is the error over the entire image. The on-target error is the error over

image masks defined where the normalized span is at least 0.5 dB. Similarly, the off-target

error is the error over image masks defined where the normalized span is lower than 0.5

dB, corresponding to all pixels not on-target. The maximum pixel error is the error at the

pixel with the strongest scattered power.

4.2 Canonical Shapes

A complex target can be broken down into the known scattering responses of simple

shapes, or canonical scatterers, as discussed in Section 2.2. To illustrate polarimetric

preservation, we consider scenes containing odd, even, and diffuse bounce canonical

shapes. Shape data is simulated over an azimuth extent of 20◦, elevation of 30◦, wavelength

of 0.03m, center frequency of fc = 10e9 Hz and bandwidth B = 2.95e9 Hz.
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Figure 4.1: Top Row: The configuration for the plate, dihedral, titled dihedral, and group
scenes. Second Row: The SPAN of the plate, dihedral, tilted dihedral and group scenes,
along with regions of interest.

Polarization preservation imaging results are found for an individual plate, an

individual standard dihedral, an individual tilted dihedral, and a group scene consisting

of a plate, standard dihedral and top-hat. For clarity, the standard dihedral scene is called

the ‘dihedral scene’, and the tilted dihedral scene is called the ‘tilted dihedral scene.’ To

eliminate comparisons across RCS, the shape parameters are chosen such that the RCS is

the same for each canonical shape. Figure 4.1 shows the scene setup and boxes in the

on-target mask (black) and maximum pixel (star) for each scene. The off-target mask

Table 4.1: Canonical Shape Scene Parameters.

Parameters Plate Dihedral Top-hat Tilt-Dihedral

(x, y, z) (0, 0, 0) m (0, 0, 0) m (−1,−1,−1.5) m (0, 0, 0) m

L 0.8m 0.6m - 0.6m

H 0.4243m 0.4m 1.6478m 0.4m

r - - 1m -

RCS 1608.5 m2 1608.5 m2 1608.5 m2 1608.5 m2

Roll/Pitch/Yaw 30◦ pitch - - 45◦ pitch
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contains all pixels outside the on-target mask. Table 4.1 lists the shape parameters for

each canonical scene. It should be noted that the tilted dihedral has the same parameters as

the dihedral along with a 45◦ pitch angle. Moreover, the group scene consists of a top-hat

with parameters as listed as well as a plate at (1, 1, 2) m and standard dihedral at (0, 0, 2)

m. All other plate and dihedral parameters are the same for the group scene.

Figures 4.2 - 4.5 show the |S HH |, |S HV | and |S VV | signal responses for each scene at

each stage of processing using 30 dB of WGN and λ = 0.7. The pure simulated images

in the top row of each figure clearly show the impulse response smearing. Notice that due

to the orientation of all the scatterers, tilted dihedral is the only object with significant

response in the HV channel. The second row of each figure shows the images after

adding noise at a moderate SNR of 30 dB. The third row in Figures 4.2-4.5 shows the

results of independently enhancing each polarization channel under a sparsity constraint

with λ = 0.7. The fourth row shows the results of jointly enhancing the polarimetric

images using the non-convex constraint h j. Finally, the fifth row shows the results of joint

enhancement using the convex constraint g j.

First consider noise level. Notice that in general the jointly restored images (both

convex and non-convex) have reduced the noise better than the independently restored

images; in the titled dihedral scene each enhancement type removes noise well. Next,

consider signal restoration. In general, the independent images and non-convex jointly

enhanced images produce similar results for the HH and VV channels; the convex jointly

enhanced images appear to have preserved some high-level smearing close to the target,

while decreasing the strength of the signal in the on-target region; this phenomena is most

pronounced in the single shape cases, and less dramatic in the group scene. Moreover, in

the dihedral case the non-convex constraint appears to have successfully restored some of
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Figure 4.2: Plate scene images for all stages of enhancement. Top Row: Simulated |S HH |,
|S HV |, and |S VV | with no added noise. Second Row: Simulated |S HH |, |S HV |, and |S VV |

with 30 dB of WGN. Third Row: Independently restored |S HH |, |S HV |, and |S VV | with no
polarimetric coupling constraint for λ = 0.7. Fourth Row: Jointly restored |S HH |, |S HV |,
and |S VV | with non-convex coupling constraint for λ = 0.7. Last Row: Jointly restored
|S HH |, |S HV |, and |S VV | with convex coupling constraint for λ = 0.7.
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Figure 4.3: Dihedral scene images for all stages of enhancement.Top Row: Simulated
|S HH |, |S HV |, and |S VV | with no added noise. Second Row: Simulated |S HH |, |S HV |, and
|S VV | with 30 dB of WGN. Third Row: Independently restored |S HH |, |S HV |, and |S VV |

with no polarimetric coupling constraint for λ = 0.7. Fourth Row: Jointly restored |S HH |,
|S HV |, and |S VV | with non-convex coupling constraint for λ = 0.7. Last Row: Jointly
restored |S HH |, |S HV |, and |S VV | with convex coupling constraint for λ = 0.7.
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Figure 4.4: Tilted Dihedral scene images for all stages of enhancement.Top Row:
Simulated |S HH |, |S HV |, and |S VV | with no added noise. Second Row: Simulated |S HH |,
|S HV |, and |S VV | with 30 dB of WGN. Third Row: Independently restored |S HH |, |S HV |,
and |S VV | with no polarimetric coupling constraint for λ = 0.7. Fourth Row: Jointly
restored |S HH |, |S HV |, and |S VV | with non-convex coupling constraint for λ = 0.7. Last
Row: Jointly restored |S HH |, |S HV |, and |S VV | with convex coupling constraint for λ = 0.7.
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Figure 4.5: Group scene images for all stages of enhancement.Top Row: Simulated |S HH |,
|S HV |, and |S VV | with no added noise. Second Row: Simulated |S HH |, |S HV |, and |S VV |

with 30 dB of WGN. Third Row: Independently restored |S HH |, |S HV |, and |S VV | with no
polarimetric coupling constraint for λ = 0.7. Fourth Row: Jointly restored |S HH |, |S HV |,
and |S VV | with non-convex coupling constraint for λ = 0.7. Last Row: Jointly restored
|S HH |, |S HV |, and |S VV | with convex coupling constraint for λ = 0.7.
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Figure 4.6: The 2-norm cost for the plate scene as a function of λ (SNR = 30 dB). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 2-Norm for increasing λ (SNR = 30 dB).

the HV channel. However, for the group case the non-convex constraint appears to have

added some HV response not present in the original images, which is undesirable. The

tilted dihedral has good HH, HV , and VV response for all three enhancement types.

4.2.1 Signal Fidelity.

The error due to loss of signal fidelity is considered for each canonical scene over

all the target regions for increasing values of λ and SNR. Figure 4.6 compares the 2-

norm costs of the independently restored plate images with both the non-convex jointly

restored plate images and the convex jointly restored plate images for increasing values

of λ. Similarly, Figure 4.7 compares the 2-norm costs of the independently restored plate
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Figure 4.7: The 2-norm cost for the plate scene as a function of SNR (λ = 0.7). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 2-Norm for increasing SNR (λ = 0.7).

images with the non-convex jointly restored plate images and the convex jointly restored

plate images for increasing SNR. Notice that the 2-norm cost is considered individually for

the HH, HV and VV channels. Moreover, note that in the graph legend Ind represents an

independently enhanced channel, Joint C represents a convex jointly restored channel, and

Joint NC represents a non-convex jointly restored channel. The subgraphs do not have the

same scale. Figures 4.8-4.9, 4.10-4.11, and 4.12-4.13 show the corresponding images for

the dihedral, tilted dihedral and group scenes, respectively.

First consider the independently restored images. For each scene, the independently

restored images have a consistently lower full scene error cost in each channel compared to

the jointly restored image channels. Furthermore, the on-target error of the independently
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Figure 4.8: The 2-norm cost for the dihedral scene as a function of λ (SNR = 30 dB). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 2-Norm for increasing λ (SNR = 30 dB).

enhanced channels is consistently lower than the corresponding off-target error. In the

single shape scenes, the three independently restored channels have a similar on-target error

magnitude. The three independently restored channels display on-target error magnitude

differences when the number of scatterers increases. Specifically, the group scene displays

a lower independently restored HV channel error compared to the HH and VV channels,

which is attributable to the one region of low scattering response in the HV channel

compared to the distinct regions of high scattering response in the HH and VV channels.

Conversely, the tilted dihedral scene displays a higher full scene error in the independently

restored HV channel versus the HH or VV . Upon inspection, the higher error in the HV

channel comes from the off-target region and not the on-target region. In general, the
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Figure 4.9: The 2-norm cost for the dihedral scene as a function of SNR (λ = 0.7). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 2-Norm for increasing SNR (λ = 0.7).

2-norm cost steadily increases in each channel as λ increases and steadily decreases in

each channel as SNR increases. These trends make sense; the signal fidelity and sparsity

have a tradeoff. Thus higher penalties for sparsity lead to an increased error in signal

fidelity. Moreover, as additive noise decreases the signal becomes easier to restore leading

to decreased error in signal fidelity.

Next consider the non-convex jointly restored images. The non-convex jointly restored

image channels consistently show the HV channel with the most full scene error, followed

by the HH channel and then VV channel. For the plate and dihedral scenes, the three non-

convex jointly restored channels have approximately the same error; in the tilted dihedral

and group scene there is some difference between the HV channel and the other two
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Figure 4.10: The 2-norm cost for the tilted dihedral scene as a function of λ (SNR = 30 dB).
The (Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target
and (Lower Right:) Max Pixel cost of the 2-Norm for increasing λ (SNR = 30 dB).

channels. Moreover, notice that the on-target error is significantly less than the off-target

error, which is desirable. In all scenes, the on-target non-convex jointly restored channels

have a similar level magnitude of error to the independent channels, particularly for small

λ. Moreover, notice that for the plate, dihedral and group scenes, the non-convex jointly

restored channels have less on-target error than the corresponding convex jointly restored

channels. However, in the tilted dihedral scenes the non-convex jointly restored channels

have a distinctly higher on-target error than the corresponding convex channels. Next,

notice that the non-convex jointly restored channels converge to the independently restored

channels as SNR increases. This is desirable, since the independent channels minimize

error in a no-noise environment, so it follows that the non-convex jointly restored channels
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Figure 4.11: The 2-norm cost for the tilted dihedral scene as a function of SNR (λ = 0.7).
The (Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target
and (Lower Right:) Max Pixel cost of the 2-Norm for increasing SNR (λ = 0.7).

should converge to a similar solution. Overall, the non-convex jointly restored images

display similar signal accuracy compared to the independent case.

Finally, consider the convex jointly restored image channels. The convex jointly

restored channels consistently show the HH and VV channels with the same error and

the HV channel with consistently lower error. Moreover, notice that in the plate and

dihedral scenes, the full scene error of the convex jointly restored HH and VV channels

is significantly higher than the corresponding full scene error in the independent and non-

convex jointly restored channels. Looking closer, a significant portion of the convex jointly

restored full scene error is due to on-target error, which is significantly higher than its

off-target error. This trend is undesirable; the on-target regions of the scene are arguably
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Figure 4.12: The 2-norm cost for the group scene as a function of λ (SNR = 30 dB). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 2-Norm for increasing λ (SNR = 30 dB).

more important than the off-target regions. In the tilted dihedral scene, the convex jointly

restored channels perform better in the on-target region than the off-target. Finally, notice

that while all error types of the convex jointly restored channels do decrease with SNR, we

do not see convergence to the corresponding independent channels.

Overall, the independently restored channels have a consistently lower 2-norm cost

than the corresponding non-convex jointly restored channels and convex jointly restored

channels. In the scenes with strong odd and even bounce scatterers, the HV channel has

consistently lower 2-norm cost than the HH and VV channels for each enhancement type.

Moreover, the non-convex jointly restored channels have a lower 2-norm cost compared

to the convex jointly restored channels in the scenes with strong odd and even bounce
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Figure 4.13: The 2-norm cost for the group scene as a function of SNR (λ = 0.7). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 2-Norm for increasing SNR (λ = 0.7).

scattering. However, in the scenes with strong diffuse scattering the HV channel tends

to have more error than the corresponding HH and VV channels, and we see a lower 2-

norm cost in the convex jointly restored channels compared to the independently restored

channels.

4.2.2 Sparsity.

The cost of the sparsity term is considered for each scene over increasing values

of λ and SNR for various scene regions. Figure 4.14 compares the 1-norm cost of the

independently restored plate images with both the non-convex jointly restored plate images

and convex jointly restored plate images for increasing values of λ and various scene
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Figure 4.14: The 1-norm cost for the plate scene as a function of λ (SNR = 30 dB). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 1-Norm for increasing λ (SNR = 30 dB).

regions. Similarly, Figure 4.15 compares the 1-norm cost of the independently restored

plate images with both the non-convex jointly restored plate images and convex jointly

restored plate images for increasing SNR over various scene regions. Notice that the 1-

norm cost is considered individually for the HH, HV , and VV channels. Figures 4.16-4.17,

4.18-4.19, and 4.20-4.21 show the corresponding images for the dihedral, tilted dihedral

and group scenes, respectively.

First consider the independently restored channels. For each scene, and each scene

region, the independently restored images have a higher 1-norm cost in each channel

compared to the corresponding joint convex and joint non-convex channels. The exception

is the off-target cost in the plate and dihedral scenes, where the convex jointly restored
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Figure 4.15: The 1-norm cost for the plate scene as a function of SNR (λ = 0.7). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 1-Norm for increasing SNR (λ = 0.7).

images have a higher cost than the independent images. From Figures 4.2 - 4.5, it follows

that the higher costs are due in part to the higher noise level in the independent images

compared to the corresponding joint images, and in part to a stronger on-target signal.

Furthermore, notice in plate, dihedral and group scenes, the independently restored images

have a significantly higher signal response in the HH and VV channels compared to the HV

channel, which leads to a consistently lower 1-norm cost for the HV channel compared to

the HH and VV channels in all scene regions. In the tilted dihedral scene, where the

HV channel has a strong signal response, the independently restored HV channel has a

higher 1-norm cost than the HH and VV channels. Considering the average error per pixel

indicates the independently restored images have a low cost average per pixel in the off-
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Figure 4.16: The 1-norm cost for the dihedral scene as a function of λ (SNR = 30 dB). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 1-Norm for increasing λ (SNR = 30 dB).

target region, and a high average cost per pixel in the on-target region. Hence, the sparse

pixels are picked primarily from the on-target region, which is desirable. Finally, notice

that the 1-norm cost of the independent channels steadily decreases over λ and decreases

over SNR, as expected.

Next consider the non-convex jointly restored images. The non-convex jointly restored

channels display similar trends to the independent case; specifically, in the plate, dihedral

and group scenes, the HH and VV channels have a consistently higher sparsity cost than

the HV channel; in the tilted dihedral scene, the HV channel has a consistently higher

cost. Moreover, the non-convex jointly restored channels converge to the sparsity level of

the corresponding independent channels as SNR increases. Based on Figures 4.2-4.5, the
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Figure 4.17: The 1-norm cost for the dihedral scene as a function of SNR (λ = 0.7). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 1-Norm for increasing SNR (λ = 0.7).

independent and convex jointly restored images converge to a similar solution. Next, notice

that the non-convex jointly restored images have a strong on-target signal and a low signal

elsewhere, which manifests as a high average pixel 1-norm cost in the on-target region and

a low average pixel 1-norm cost in the off target region, as desired.

Finally, consider the convex jointly restored images. The convex jointly restored

channels display similar trends to the independent case; specifically, in the plate, dihedral

and group scenes, the HH and VV channels have a consistently higher sparsity cost than

the HV channel; in the tilted dihedral scene, the HV channel has a consistently higher

cost. In the plate, dihedral, and group scenes, the convex jointly restored channels have a

lower 1-norm cost average per pixel in the on-target region compared to the corresponding
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Figure 4.18: The 1-norm cost for the tilted dihedral scene as a function of λ (SNR = 30 dB).
The (Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target
and (Lower Right:) Max Pixel cost of the 1-Norm for increasing λ (SNR = 30 dB).

independent and non-convex jointly restored channels, and a higher 1-norm cost average

per pixel in the off-target region. From Figures 4.2-4.5, its clear that the convex jointly

restored images have a lower signal strength on-target, and have preserved some impulse

response smearing off-target. In the titled dihedral scene, the convex jointly restored

channels have a higher pixel average 1-norm cost on-target compared to the non-convex

jointly restored channels.
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Figure 4.19: The 1-norm cost for the tilted dihedral scene as a function of SNR (λ = 0.7).
The (Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target
and (Lower Right:) Max Pixel cost of the 1-Norm for increasing SNR (λ = 0.7).
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Figure 4.20: The 1-norm cost for the group scene as a function of λ (SNR = 30 dB). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 1-Norm for increasing λ (SNR = 30 dB).
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Figure 4.21: The 1-norm cost for the group scene as a function of SNR (λ = 0.7). The
(Top Left:) Full scene error (Top Right:) On-Target Error (Lower Left:) Off-Target and
(Lower Right:) Max Pixel cost of the 1-Norm for increasing SNR (λ = 0.7).
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4.2.3 Polarimetric Preservation.

The error due to loss of polarimetric preservation is considered for each canonical

shape over increasing values of λ and SNR for several scene regions. Figure 4.22 compares

the polarimetric constraint cost of the independently restored plate images with both the

non-convex jointly restored plate images and convex jointly restored plate images for

increasing values of λ and various scene regions. Similarly, Figure 4.23 compares the

polarimetric constraint cost of the independently restored plate images with both the non-

convex jointly restored plate images and convex jointly restored plate images for increasing

SNR over various scene regions. Notice that the polarimetric constraint cost is considered

individually for the terms
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4.25, 4.26-4.27, and 4.28-4.29 show the corresponding images for the dihedral, tilted

dihedral and group scenes, respectively. Notice that among all figures, similar scattering

in the HH and VV responses manifests itself as a similar error for the ratios
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First consider the independently restored image ratios. The independently restored

polarimetric ratios have a high error compared to the corresponding jointly restored ratios

for all scenes and scene regions. In the tilted dihedral scene, all preservation types appear

to have similar levels of error in all scene regions. This improvement in the independently

restored channels may be due to the similar signal strengths in each channel. In all scenes,

the independently restored ratios have a high full scene error, the bulk of which comes from

the off-target region. However, the independently restored on-target polarimetric ratio error

is high compared to the corresponding jointly restored on-target polarimetric ratio error.

For the plate and dihedral scenes, the independently restored image ratio error tends to

increase as λ increases and decreases as SNR increases, as expected. However, for the

tilted dihedral and group scenes, the full scene and off-target error of the independently
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Figure 4.22: The polarimetric preservation cost for the plate scene as a function of λ (SNR
= 30 dB). Top Left: Full scene error Top Right: On-Target error Lower Left: Off-Target
Error Lower Right: Max Pixel Error of polarization preservation of the independent and
jointly enhanced images for increasing values of λ.

restored image ratios decreases as λ increases. Moreover, notice that in the plate and

dihedral scenes, the full scene and off-target error of the independently restored ratios and

convex jointly restored ratios has a peak at 30 dB, which may be due in part to the large

amount of 30 dB impulse response smearing throughout the plate and dihedral response.

Next consider the jointly restored image ratios. For all scenes, the non-convex jointly

restored polarimetric ratios have a consistently low off and on-target error magnitude. For

all scenes, the maximum pixel error of the non-convex jointly restored ratios is lower than

the corresponding independently restored ratios, but higher than the corresponding convex
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Figure 4.23: The polarimetric preservation cost for the plate scene as a function of SNR
(λ = 0.7). Top Left: Full scene error Top Right: On-Target error Lower Left: Off-Target
Error Lower Right: Max Pixel Error of polarization preservation of the independent and
jointly enhanced images for increasing values of SNR.

jointly restored ratios. These trends are desirable; polarimetric preservation does better in

the jointly restored channels compared to the independently restored channels.
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Figure 4.24: The polarimetric preservation cost for the dihedral scene as a function of λ
(SNR = 30 dB). Top Left: Full scene error Top Right: On-Target error Lower Left: Off-
Target Error Lower Right: Max Pixel Error of polarization preservation of the independent
and jointly enhanced images for increasing values of λ.
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Figure 4.25: The polarimetric preservation cost for the dihedral scene as a function of SNR
(λ = 0.7). Top Left: Full scene error Top Right: On-Target error Lower Left: Off-Target
Error Lower Right: Max Pixel Error of polarization preservation of the independent and
jointly enhanced images for increasing values of SNR.
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Figure 4.26: The polarimetric preservation cost for the tilted dihedral scene as a function of
λ (SNR = 30 dB). Top Left: Full scene error Top Right: On-Target error Lower Left: Off-
Target Error Lower Right: Max Pixel Error of polarization preservation of the independent
and jointly enhanced images for increasing values of λ.
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Figure 4.27: The polarimetric preservation cost for the tilted dihedral scene as a function of
SNR (λ = 0.7). Top Left: Full scene error Top Right: On-Target error Lower Left: Off-
Target Error Lower Right: Max Pixel Error of polarization preservation of the independent
and jointly enhanced images for increasing values of SNR.
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Figure 4.28: The polarimetric preservation cost for the group scene as a function of λ (SNR
= 30 dB). Top Left: Full scene error Top Right: On-Target error Lower Left: Off-Target
Error Lower Right: Max Pixel Error of polarization preservation of the independent and
jointly enhanced images for increasing values of λ.
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Figure 4.29: The polarimetric preservation cost for the group scene as a function of SNR
(λ = 0.7). Top Left: Full scene error Top Right: On-Target error Lower Left: Off-Target
Error Lower Right: Max Pixel Error of polarization preservation of the independent and
jointly enhanced images for increasing values of SNR.
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4.2.4 Scattering Measure.

The scattering measure is considered for each scene region over increasing values of

λ and SNR as computed by Eq. (4.6). The error due to improper scattering classification

is considered for each canonical shape over increasing values of λ and SNR for the on-

target region. Figure 4.30 shows the Pauli basis decomposition of the ideal plate on-target

scattering matrix, independently restored images, non-convex jointly restored images and

the convex jointly restored images for λ = 0.7 and SNR = 30 dB. Figure 4.31 compares

the plate scattering classification error of the independently restored plate images with both

the non-convex jointly restored plate images and convex jointly restored plate images for

increasing λ and SNR. Figures 4.32-4.33, 4.34-4.35, and 4.36-4.37 show the corresponding

images for the dihedral, tilted dihedral and group scenes, respectively.

First consider the independently restored images. The independently restored images

have a consistently lower scattering classification error than the non-convex jointly restored

images. However, notice the graph scale indicates that the error cost difference between

the all the restored images is less than 0.1. The scattering error of the independently

restored images increases as λ increases, and decreases as SNR increases as expected.

The independent, convex jointly restored, and non-convex jointly restored scattering

classification error tend to converge as SNR increases. Notice, however, that the jointly

restored images do perform better in low SNR cases compared to the independently

restored images. In particular, the convex jointly restored images have a uniform scattering

classification error across λ and SNR.

4.3 Summary

In theory, jointly optimizing polarimetric radar data to enforce sparsity and preserve

scattering matrix relationships among image channels should lead to improved target

classification. The figures and graphs throughout Ch. 4 demonstrate that the improved

preservation in the jointly enhanced channels compared to the independently enhanced
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channels did not consistently lead to improved scattering classification efforts under

the metric considered. This discrepancy may arise from definition differences between

the polarimetric coupling constraint, which preserved scattering matrix relationships of

the received signals, and the scattering classification metric, which compared the ideal

classification to the estimated classification. However, the jointly enhanced images did

perform better in scattering classification than the independently restored images for some

low SNR cases. These cases should be considered further, as polarimetric preservation

may provide helpful insight into a scene of interest in high noise cases. Moreover, future

research could consider ways to rephrase the polarimetric coupling constraint to better

reflect imperfections in the received signals.
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Figure 4.30: Pauli basis decomposition for the plate scene. The Top Left: ideal scattering
matrix, Top Right: independently enhanced images, Lower Left: non-convex jointly
enhanced images, and Lower Right: convex jointly enhanced images at SNR = 30 dB
and λ = 0.7.

Figure 4.31: On-target average scattering error for the plate scene over λ and SNR.
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Figure 4.32: Pauli basis decomposition for the dihedral scene. The Top Left: ideal
scattering matrix, Top Right: independently enhanced images, Lower Left: non-convex
jointly enhanced images, and Lower Right: convex jointly enhanced images at SNR = 30
dB and λ = 0.7.

Figure 4.33: On-target average scattering error for the dihedral scene over λ and SNR.
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Figure 4.34: Pauli basis decomposition for the tilted dihedral scene. The Top Left: ideal
scattering matrix, Top Right: independently enhanced images, Lower Left: non-convex
jointly enhanced images, and Lower Right: convex jointly enhanced images at SNR = 30
dB and λ = 0.7.

Figure 4.35: On-target average scattering error for the tilted dihedral over λ and SNR.
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Figure 4.36: Pauli basis decomposition for the group scene. The Top Left: ideal scattering
matrix, Top Right: independently enhanced images, Lower Left: non-convex jointly
enhanced images, and Lower Right: convex jointly enhanced images at SNR = 30 dB
and λ = 0.7.

Figure 4.37: On-target average scattering error for the group scene over λ and SNR.
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V. Conclusion

Synthetic aperture radar images contain impulse response effects that appear to smear

or blur the image [4]. Sparse imaging is a regularization method that provides a way

to overcome limited datasets for image reconstruction [3]. Sparsity constraints enforced

alongside data fidelity constraints lead to signal energy placement in only high amplitude

pixels [3], thus emphasizing high magnitude scatterers in the scene while reducing the

effects of noise and the impulse response.

Image data for a scene of interest may be collected over multiple polarization channels

[5]. In the case of polarimetric SAR images, regularization techniques are typically applied

independently to each polarimetric channel. However, independent processing does not

account for cross-channel coupling and may corrupt the polarimetric information in the

signals. Recent research into joint enhancement techniques has shown promising results

for multi-channel datasets with similar regions of signal magnitude and/or phase [5, 6].

However, in the case of polarimetric SAR data, scattering may be present in some channels

and not in others. This thesis mathematically formulated multi-channel sparse imaging

for polarimetric radar data using a joint enhancement algorithm to enforce sparsity and

polarimetric coupling constraints.

5.1 Summary of Findings

Two candidate functional relationships were separately considered to describe

polarimetric coupling among received signal channels: one convex function g and one

non-convex function h. Specifically, these functions were designed to preserve the Sinclair

scattering matrix. The two functions g and h were reformed as optimization constraints

g j and h j, respectively. Then, the coupling constraints were considered separately in

an optimization problem constructed to maintain signal fidelity, enforced sparsity, and
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preserve inter-channel coupling. The constrained problem was turned into an unconstrained

dual problem similar to [5] by adding the sparsity constraint and polarimetric coupling

constraint to the objective function using Lagrange multipliers.

An iterative dual gradient descent algorithm [5, 16] was used to alternatively

calculate the updated scene estimates for each channel and then the maximizing Lagrange

multipliers for each coupling constraint. Results were found for several polarimetric SAR

datasets, including simulated radar data of various canonical scatterers. Jointly enhanced

images were compared to corresponding images found through independent enhancement,

taking into consideration signal fidelity, sparsity, polarimetric preservation, and scattering

classification.

Overall, the jointly enhanced image channels displayed significantly better polarimet-

ric preservation compared to the corresponding independently restored image channels.

More research is needed to understand how polarimetric preservation can be used to im-

prove target classification.

5.2 Future Research

Future research into this topic could consider the scattering classification improvement

of jointly enhanced polarimetric images using more extensive classification tests. For

example, one could test whether dictionary estimates of scatterers are improved with

jointly enhanced polarimetric images versus independently enhanced polarimetric images.

Moreover, future research could consider further polarimetric coupling constraints

designed to emphasize desired polarization responses in the image, such as odd bouce

or dihedral reflection. This should not be confused with enhancement of image regions,

edges, or points, which has been well documented.
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